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CONVERGENCE OF RECURSIVE ADAPTIVE AND IDENTIFICATION
PROCEDURES VIA WEAK CONVERGENCE THEORY

+Harold J. Kushner

Abstract
- - --

Results and concepts in the theory of weak convergence of a

sequence of probability measures are applied to convergence

problems for a variety of recursive adaptive (stochastic

• approximation like) methods. Similar techniques have had wide

applicability in areas of operations research and in some other

• areas in stochastic control. It is quite likely that they will

play a much more important role in control theory than they

do at present, since they allow relatively simple and natural

proofs for many types of convergence and approximation problems.

Part of the aim of the paper is tutorial: to introduce the ideas,

and to show how they might be applied. Also, many of the results

are new, and they can all be generalized in many directions.
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1. Introduction

The aims of this paper are two-fold. The first aim is

tutorial. The technique of and the results in the theory of

weak convergence of a sequence of probability measures have

• found many useful applications in many areas of operations

r research and statistics (1], [2]. Their role in control theory

has been relatively limited, being confined mainly to the work

in [3], (4] which deal with control problems on diffusion models.

Yet, its intrinsic power as well as the nature of the past

successes, suggests that its role in control theory should be

- 
deeper than it is at present. The techniques are particularly

valuable when convergence or approximation ideas are being

• dealt with.

In order to illustrate the possibilities, the ideas of

weak convergence theory will be applied (the second goal of

the paper) to some convergence problems for an interesting

class of adaptive processes. These processes have the interest-

• • ing stochastic approximation (SA) like framework used by Ljun g

and others (5], (6], and a number of practical applications.

The application to the convergence problem will illustrate some

I of the main ideas of weak convergence theory. Some of Ljung’s

I results will be rederived.

Sometimes our conditions are weaker, and sometimes stronger.

Our proofs are generally much simpler. They appear to be

readily generalizable to more abstract cases, and conditions on

the noise and coefficient sequences are weaker. The ideas used
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here allow simpler proofs, and focus on somewhat different

types of conditions. They are essentially “invariant” with

respect to “perturbations”. Other advantages will be discussed

in the sequel. For example, there are extensions to the case

where state space constraints must be included. The results

here do not replace those of Ljung. Both methods (which are

not unrelated) are quite interesting, and various combinations

of them may well prove more fruitful than either one alone, in

allowing us to handle broader classes of SA like procedures -

which include more realistic noise processes, etc.

The classical techniques are too cumbersome and too over-

dependent on special properties - such as square summability of

certain coefficient sequences, and orthogonality properties of

the noise. “On line” methods of identification, for example,

usually require rather weak assumptions on the noise sequences.

In any case, more powerful methods for the handling of such

recursive algorithms have been long needed.

In Section 2, some of the ideas of weak convergence theory

are introduced. Section 3 elaborates certain points and cri-

teria of Section 2, Section 4 develops the main application,

and certain extensions are discussed in Section 5.

To motivate our point of view, suppose that

{Xn (.), T1 < t < T2} (possibly T2 = and/or T1 = -~ ) is

a sequence of random processes whose paths are in a path or

• ~
• function space cZ w.p.l, for each n. It turns out that if we

• view each Xn(.) as an abstract valued random variable (with

____  _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~ J:T~•~~~~-~-- - I
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values in 
~~~ ) ,  and study the sequence of measures induced on

• ~~ by {x 1k ( . ) } , then very useful results can often be ob-

tained on various limiting (n -. °°) properties of the sequence.

• For this reason, it is useful to study sequences of probabilities

on suitable abstract spaces, even if the applications are con-

cerned.
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2. Weak Convergence of Measures

• The main reference is Billingsley [ 7j• See also Gikhman and

Skorokhod [8 1, Chapter 9, or Chapter 2 in Kushner [ 4], for a

brief summary of the basic ideas. Weak convergence is a generaliza-

tion to abstract valued random variables of convergence in

distribution. The statements below (unless otherwise specified)

are in [ 7], Chapter 1. Let •g~ denote a complete separable

metric space. Suppose for the moment that the processes+are of

• interest over a finite interval [T1,T2]. Then ~~ is usually

taken to be C[T1,T2] or D[T1,T2] (or Cm,Dm, their m-fold

products), where C is the space of real—valued continuous functions

with the sup norm, and D is the space of real-valued functions

which are right continuous, continuous at T2, and have left hand

limits on (T1,T21. The space D is often much more convenient

to work with than the space C, but, for simplicity only , C will

be used here. (See [7], or [4], Chapter 2, for a

discussion of the topology which is usually used on D.) If T1
or T2 are infinite, then the usual extension of the topology

on C is used (convergence is then equivalent to uniform con-

vergence on finite intervals).

Let {X’~} denote a sequence of random variables with values

in ~~ let {P’~} denote the corresponding induced measures on the

(Borel) sets of ~~ , and let C(~~) (resp., C~ (~~)~ where P is

a measure on ~~) denote the set of real—valued continuous,

bounded, functions on ~~ (resp. , real—valued, bounded, measurable

and continuous almost everywhere on ~~ , with respect to P). The

+The processes of concern are to be real or vector valued. ~~ isthe space in which the ~!ths lie 
— not where the values lie. A

process X(.) is considered to be an ~~ valued random variable,
where convenient. — 

—-I -•-~•-~ - 
~~~~~•:~~•::— — 
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sequence ~p
1
~ is said to converge weakly to P(written pn > p) j f

(2.1) 
J 

f(y)P’~(dy) -‘ 
J 

f(y)P(dy)

for all f(.) ~ C(s). If (Z~2) holds for all, such f(.), it
f

also holds for all f(.) e C~ (~~). This is an important generaliza-

tion, since many of the f() of common interest in control theory

are not continuous everywhere~
’ (see examples in [4 ]). Clearly,

if ~~ is an Euclidean space, then weak convergence is equivalent

to convergence is distribution. Let q~ = Cm [T11T2], and let P~ be a

measure on ~t induced by a process X1~() or random variable

~
n. If P is a measure on ~~ , there is a separable Rm valued

process X() on [T11T2] with continuous paths w.p.1, which

induces P on ~~~~~. If P~
’ => P, we abuse terminology and say

that X~ (.) + X (~) (or X~ -
~~ X) weakly, or in distribution.

The sequence {~n} (or {x’~}) is said to be tight, if for each

c > 0, there is a compact set K
~ 

c .~~~~~ such that

(2.2) ~n{ K
~
} = P{X’~(.) £ K~} > 1 — c, all n.

If {?~ } is tight, then for each subsequence, there is a further

subsequence (denoted by ~pfl ’}) and a measure P such that

•j•
• •

~ Pn ’ => P. Indeed, tightness is necessary and sufficient for 1P’~}

+E.g.; f C c )  
• 

that relate to exit tirnes of a process from a set.

‘1 
• • 

_ _— —— ~— —•  — — ~~~~~ ~~~~~~~~~~~~~~~~~~~ 
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to be relatively compact. A product sequence {P~ x

(corresponding to, say, a sequence of pairs {X~,X~}) is tight

-- if each component {P~} is tight.

Following the forementioned abuse of terminology, if fP’~}

is tight, we may say that {x’~} is tight, then that there is a

• weakly convergent subsequence of {x~} with limit X (where,

• if X’~(.) is a process with paths in a C space, X(•) = X will

be also).

In practice, the {x’~(•)} can arise in many ways, It may

be a sequence of approximations to a process or optimal process

X(’), which is obtained by (say) some computational procedure,

and it may be desired to that X~ (.) converges to X(’) in

some sense. In many examples, a problem or process may be

parametrized by a scaling factor (as is often the case in applica-

tions to Queueing [lJ) or other parameter a. A limit process

(a = 0 or a, = co) may be easy to study, and it may be desired

to show that x~ + x° (or X°°) in a suitable sense. In this

• paper, the process Xn(.) arise in a somewhat different way. See

Section 4 on.

• The method of attack is often as follows. First tighthess

of {Xr
~} is proved by using one of the many available criteria.

Then an arbitrary convergent subsequence is selected (of which

there is at least one, by tightness). Using properties of the

sequences (as done in Section 4), the limiting process XC’) is

characterized. Then, we try to show that the character of

limit does not depend on the subsequence. Finally, via (2.1) or

similar results, we have convergence of various functionals of the 

— 
-V.----- t ~~~~~~ ~ — —~

•
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p . ,
sequence to a functional of the limit — in distribution or ex—

• pectation. One of the main advantages of the technique is that,

once we know there is tightness, we know that we can extract and

• treat convergent subsequences. It is not necessary to prove that they

exist as will be -seen -below. - This is a great advantage. • -

One of the most useful tools in applications of weak convergence

theory is known as Skorokhod imbedding (see Skorokhod [ 9 ] ,

Theorem 3.1.1 or [ 4 ] ,  Theorem 2.2). The theorem is the following.

Let P~ and P be induced (on ~~ ) by the ~~ valued random

variables X~ and X, resp., and let P~ => P. Then there is some
-

probability space (c2,~~ ,P) with ~~ valued random variables

{Xn} and X defined on it such that, for each Borel set A in ~~ ,

• P{X’1 cA } P{X1~~cA}(2.3)
A) = £ A)

and X~ + x w.p.]. in the topolo9y of 21..

I Let 21= Cm (_00,00), and let ~~ and X be 21 valued random

variables, w.p.l. Thus, the corresponding processes X’~(•),X(.), are

defined on (_co,oo) , are Rm valued, and have continuous paths

w.p.1. Suppose that P~ => P. Let and i~ (corresponding to
—-

• Rm valued continuous processes X~ (’),X(.)) on (cl ,P,~~ )

-n • •
• correspond to x and X, by the Skorokhod imbedding. Then X X

w.p.l or 21~ and this implies that sup tXn (t) - X(t)I + 0 w.p.1, as
-~~~~~~ (tI<T

+ ~~, for each T < co , While the distributions of X (reap., of 

• _ 4I_L ~~~~~~~~~~ r • ~~~~~~ _ . 
— • -
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X) are exactly those of X~ (reap., X), the probability spaces

are different. Usually, we are concerned mainly with characterizing

the limits P,X, and, since X is equivalent to X in the sense that

it induces the same distributions on Cr (_o~,o~) (or on whatever ~

is), the properties of X often yield the desired properties of x.

The imbedding allows us to use w.p.l convergence in certain

places. When the imbedding (and consequent change of probability

• space) is used here, it will be so stated — but the tilde

• notation will not be used. The same symbols will be used for both

the original and the process.

Consider a simple example. Let X~,X be real-valued with

P{Xn = 1) = 1 — P{X’~ = 0) = , P{X 0) = 1. Define ~ = 10 ,11,

• ç~ = Bore], sets on [0,1], and P = Lebesgue measure on (0,1].

• Define ~~~ and X by: i~’~ = 1 on [0, k’) , and zero elsewhere,

= 0 on 10,1]. Then (2.3) holds, and + w. p.1. The

joint distributions of ~~~~~~~~~~~~~~~ and of
are not necessarily the same; but, if we are only concerned with

the probabilistic properties of the limit X, we can just as well

use the imbedded process. In fact, in many applications each

is defined on a different probability space anyway (but not in

this paper), in which case the “joint distributions” of

{Xii••~ iXn~~•~ iX} has no meaning anyway.

— ~~~~~~~~~ 

~~~~~~ _____________ — -— - -
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3. Criteria for Tightness When 21= Cr (_oo ,co).

Let us specialize to the case Cr[_T ,T] (see Billingsley

• [ ~ 1, Section 8, where CIO ,T] is treated, for details) One of the

critical aspects of applying the theory is the establishment of

reasonably readily verifiable criteria for tightness. Since we
• • • -- • • • - • - — - - -• - -- - •——- • - • •  -• — -—-- • —•- -- •— • •  —•-——-------——---— ——--—____

• usually work with processes and their properties,and not with measures

on 21, the criteria should be, if possible, in terms of available

data on the processes~
Suppose that {x ~(~ )} is a sequence of Rr valued continuous

functions on [-T,T]. Then to any subsequence of {x~(.)}~ there is

a further subsequence which converges to an element of Cn E_T ,T],

if and only if the sequence (x~(.)} is bounded and equicontinuous

(by the Arzela—Ascoli Theorem). Thus, as is well known, the compact

sets of Crl_T,TJ are sets of equibounded and equicontinuous

functions. The criteria for (2.2) all imply that the paths of

X~~(.) are bounded and equicontinuous, with a “high enough”

probability, where the bounds and moduli of continuity are not

dependent on n.

The sequence {X~~(.)} is tight if and only if, for each

~ 
> 0, there is an N~ < such that

I
(3.1) P{IX’~(’)f > N~ } < r

~, all n

and , for each c > 0 , r~ > 0, there is a 6 E (0,1) and an n0 
<

such that

~

‘ ,
~~•: . r C :~~-~~ — ‘-- --~~ --~ -- ~~~~~~~~~~ -~~~~~~~~~~- ~~~~~~~ _ -a—- - - -
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(3.2) P{ su~ IX
n (t) — X~ (s)1 > c} < r~, for n > n

0.(t—s 1<6
—T<t, s~T

• If, for each c > 0, r~ > 0, there is a 6 c (0,1) and no

such that

(3.3)P{ sup 1X~~(t) — t(s)J >c } <~~6, for n > n0 and - .T < s < s + 6 < T ,
s<t<s+6

then (3.2) holds. Equation (3.3) is guaranteed if there is a real

K and an a > 0, b > 0, such that

(3.4) EIX~ (t) 
— Xn(S)l

a 
< KIt_ sI~~~

b, all n.

For the case CE(_ oo,co), we only need to satisfy tht~ criteria on

each [—T ,T], where ~~~ K a ,b,n0,5 can also depend on T.

• Of course , in special applications, much work can be devoted to

showing that (3.2) or (3.3) or (3.4) hold. Note that the criterion

(3.4), for a fixed n, is simply Kolmogorov ’s cr iterion for the

I path continuity of a separable random process. Here the criteria —

or (3.2) or (3.3)—must hold for all large n with the constants not

depending on n. This is hardly surprising.

It is often easier to show tightness in a D space than in a

; -j C space, since the conditions are weaker for the former. Also,

~ 
•~~ working with D, it is often possible to show that the limits are

continuous anyway. To avoid more descriptions, we stick to C.

I
• -~~~- ~~~~~~~~~~~~~~ •-- -

~~~~
-

•
-—-- -•- • - • .- — •-  - 

—------ -•-—-- - -•— ---••---——------ ••—-----—- -. -• --—--•-• ~~~-- •- _q 
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4. A General Adaptive Algorithm

Let denote a sequence of Rr valued random variables,

and {a~ } a non-negative null sequence of real numbers satisfying

(4.1) ~~~ a~~~~~~~ 00.

• r r’ rLet Q ( ’ , )  denote a continuous bounded function: R x R -.- R

and consider the algorithm

• 

- 

(4.2) = X~ - ~~~~~~~~~~~ n > 0, X0 given.

Many adaptive and identification procedures fit into the form

(4.2). Unbounded or even discontinuous Q(.,•) can also be

treated. Specific additional assumptions will be introduced

below . The aim here is solely to discuss the convergence

properties of {x~ )~ and to illustrate how the techniques can

be used in the treatment of applications, but not to deal with

more specific applications of (4.2). (A number of applications

are discussed in [5], [6].) To do this, using the ideas of

Sections 2 and 3, {x~ } must be interpolated into a continuous

time function. A natural interpolation is suggested by the

form of (4.2); the “an ” is a natural time interval for the

interpolation .
p ~

+More classical SA procedures, with and without constraints, are
• treated in [10] by somewhat similar methods.

—--—- - -- -.~~~~~
• •  - — • — •-•---•-• - - — - -• • - •  — — - • — - — • • - - •• - , -  - • - • - “ -— -_______ A
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Define+

n-l
• t0 = 0~ tn = a . ,  m(t) = max {n: t < t},

i=o i n

and define a process X°(.) by X°(t) = X0, t < 0, X~(t) = X°(t~) -

Q(X ,~~ ) (t—t ) on [t ,t +i]. Define X’~() (n = 1,2,...) by:

X~ (t) = X0(t +t) for t > -t ,  and equal to X
0 

= X’~(-t), for

t < —ta. Thus X0(.) is a piecewise linear interpolation of

with interpolation intervals fa~ }~ and Xn (.) is a left

shift of X°(.) by t~ . The purpose of the sequence of left shifts

is to (eventually) bring the “asymptotic part” of the {Xn} into

some finite time interval. Define the piecewise constant inter-

polations: 5~(t) = X~ on [t~~t~41)~ ~
‘(t) = on

with 5~(t) = X0, ~~

‘ (t) = 
~~~

, t < 0. Then

• X0(t) = X0 
- I~~(t)

(4.3)

X~ (t) = Xn(O) —

where 1fl ( .)  is defined by

• +The m (t) and tn terms will be used frequently, since the theory
requires us to work with the interpolated processes, but the
properties of the sequences {~~~X~ } must be referred to constantly.
So, we go back and forth between the interpolated process and the
sequences. The m(t) and t,, allow us to keep track of the times
at which the values of one are the values of the other. They also
are responsible for most of the notational difficulties in the paper.

k 

•

~ 

~~ :: ~ iT1 ~~~~~~~~~~~~~ ______  

-
~~~ 
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I’~(t) = (t~+s)~~ (t~+s))ds~ t >

= fk(~t ) ,  t < —tn - n

• Before proceeding, let us introduce some additional assumptions.

(Al) sup P (IX I > K) 0 as K +

- (A2 ) There are measurable real valued functions g(’),8(’)

such that 0(e) + 0 as e ~ 0 and

IQ (x ,y) — Q(x’,y) I $~ g(y)0(Ix—x ’I ).

• Define G’~(t) = I g(~ (t +s))ds, t e (_co ,c o ) ,  and suppose thatJ o
{G~ (.)} is tight on C (-co ,co) .

(A3) There is a random variable ~ such that, for any bounded

• and continuous real valued function f(’):

I E [ f (~fl+k ) I  E
J

~~~ i < n] + Ef(~), as n, k -~~

(A4) Define A () ~~ A(x) = EQ (x ,F). (Note that A() is

bounded and continuous.) Suppose that S, the set of zeroes of

- A(’), is bounded and connected, and that * = —A (x) is

~ 
.j asymptotically stable (to S).

f ~ Without the connectnedness property, the conclusions below

(4.6) are to be replaced by: x largest finite invariant set

L. n

t •
1

• •

~~~~~~~~~~~~ II2’.~~~~~~
_ _ _  

•
~~~~

• - - • •  - -
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
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of ,é = —A (x), and this invariant set replaces S in (4.7).

(Al) can frequently be verified by a Liapunov function type of

method, or Q(.,.) may be constructed to have some type of in-

trinsic stability. The aim here is to show the convergence,

assuming that the mass does not wander off to infinity. Both

(A2) and (A3) can be weakened. Indeed, there need not exist

such a ~ for the method to be used, but, then, a weaker assumption

and more detail need to be added. In many problems involving side

constraints, Q(.,.) and A(.) are discontinuous and indeed, the

function that replaces A(.) may even be multivalued. These

matters will be dealt with in a subsequent paper. Also, various

abstract valued and Xn can be treated. The various possible

extensions indicate the power of the technique. Here, we try to

keep the structure relatively simple, in order to illustrate the

basic ideas.

Both Xr~(.) and f ~~(~~ ) have paths in C
r (_co ,oo) for each n.

By (Al) and the boundedness of Q(.,.), both (3.1) and (3.2) hold

for {X’~(.),I~ (.)}. Hence that sequence is tight on C2r (_oo ,00).

Henceforth, let N index a weakly convergent subsequence (of

the measures induced on C2r (_OD ,00) by ~X
n(.),In1(.)}). The measure

on C2’(—co ,co), which is the limit of the weakly convergent sub-

sequence,is induced by a process X(•),I(•) with continuous paths.

Using Skorokhod imbedding, Ct) + X(t), IN(t) -
~ 1(t), w.p. 1,

uniformly on finite t-intervals . The process I ( s )  is absolutely

continuous, and we can Suppose that I I (t) I < suplQ (x,y) I . Define
x,y

Q( .) by 1(t) = Q(t). Thus, X(t) = X(0) — J Q(s)ds. Of course,

t

1

~~ 

0

4

J
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(the measures of) all these limits may conceivably depend on the

particular convergent subsequence which is selected. The limit

X(.) will now be analyzed, :and it will be shown that (the

convergence result) (4.5), (4.7), (4.8) hold.

• Now, suppose that Skorokhod imbedding is used - so that we

can suppose that {x’~(’) ,x ( .) }  are all defined on the same

probability space.

For t c (_co ,co) , define (recall XN(s) = X°(tN+s))

EN(t) = 
J 

[Q(XN(s),~ (tN+s)) — Q(~ (t~-i-s),~ (t.N+s))]ds

FN(t) = 
J 

[Q(X1
~(s),~ (tN+s)) 

— Q(X(s),~ (t +s))]ds.o N

Since Q(’, ) is bounded, {Et
~(.),F

N(.)} is tight on

Let ~~ denote a weakly convergent subsequence of

{E~(.) ,F
N(.) ,XN(.) , 1N(~) ,GN(.)), and suppose (henceforth) that

Skorokhod imbedding is used. Note that, by~ (A2),

IE~
1 (t)I ~ max O (IXN’(s) — ~ (tN , + s ) I ) G~

” (t ) ,  It i < T.
Is I~ T

Since (•) converges to some limit G ( .) s C(—co ,~ ), and the

max term goes to zero as N’ + co , the limit of {EN’ (‘)} is the

zero process. Similarly for {FN’(.)}. These limits do not depend

~The only difference between Xn(S) and ~ (t~+s) is that the first

is a piecewise linear and the second a piecewise constant inter-
polation. They are equal at the s = t~~ 1 - t~ , all i.

________ • 
• •  ~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~

-
~~~~
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on {N’), and the actual limit G ( )  is not important (only its

existence is important), and so we suppose that N’ = N, and re-

turn to the original subsequence. (The above argument will be

implicitly used several times in the sequel - usually when (A2)

• is appealed to.) Thus, the limits of (1N(~)) are the same as

those of ~~~~~~~~~~~~ where we define

g t
(t) = I Q Cx (s) , 

~ 
(tN

+s) ) ds, t >

Jo

and

(t) = ~~ (~tN), t ~

Clearly, ~Y~~(.)  is easier to work with than is 1N(.)~ We will now

try to simplify ~~~( • ) .

Define the function X~ (•) by X~~(s ) = X(iA) on [iA ,iA+A ),

1 = O ,±l,... Define ~~ (‘) as was defined, but with

X~~(~) replacing X(•). Suppose that I (t) f A(X~~(s))ds weakly
0

as N + co~ Then by (A2), and the convergence of X~~() to X (•)

as ~ + 0 (uniformly4w.p.1 on finite time intervals), the limit
rt

of {~~~(‘)} has values j A (X(s))ds. In particular , we can consider
0

one interval at a time: we need only consider the limit of
• rt

{J Q(x,C (t +s).)ds, t c [i~,i~+~)J for each x ~ R
r.

iA N

‘1Assuxning Skorokhod irnbedding is used.

}
~ 

:!

-- 
- •- —- - . -- _

~~ -
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Define Ô(x,~ (tN+s)) = Q(x,~ (tN+s)) 
— EQ(x,E). The sequence

{K N ( . ) )  with values (t > i~ )

KN (t) = I 6(x ,~ (tN+s))dsJ i~

is tight on Cr[~~ , it~+~], since 8 is bounded. To show KN ( . )  4

zero process weakly, as N + co , it is only necessary to show that
E I K N (t ) 1

2 
-
~ 0 as N -~ co~ To do this with simple notation , do it

component by component, In particular (w.l.o.g), suppose that

Q(~ , .) and Ô(• ,•) are scalar valued. Note that EIKN (t) 1 2 has
the same limit as has

m (tN-I-t)

E aka.Q(x,~ k
)Q(x ,

~~
•)

k,j=m (t~+iA) ~

(4.4)

m(t.~
+t) -m(tN+i~

)
= 

kA=0 
~ E am (~~+~~)÷k 

a (~~ J~)÷~ 8(x~ (t~÷i~)+k~ 
6(x, (~~÷~~)÷~).

For a 6 > 0, 6 < t — iL~, first consider the sum in (4.4) over

those k,j such that ltm (~~+j~)+k 
— tm(t +i~~) + j 1 ~ 6. This sum is

bounded from above by some constant times 6 . Thus, to show that

(4.4) + 0 as N + co , we can suppose that Itm(~~+i~~+k - ~~~~~~~~~~ ~ 6,

for an arbitrary 6 > 0. In particular , we can assume that

tm(t+i~ )+k ~ 
tm(t + i~ )+j + 6.  As N ~~~, the k,j satisfying

this relationship also satisfy k — j  + ~~~, since a~ ~ 0 as n -‘ ~~.

Using these facts, together with (A3) and the definition of Q(.,.)

yields that, for such k,j pairs,

L 
•

LI . -~~~~~~~ 
~-- -- ~~~~::i .~~~~~ •~~~~:~~~~

_ . —~~
_ ::1T•



r
l~

u < m(t
N+i

~
) + j J  0 w.p.l as N

This result, together with

m(tN+t)
lini a. = (t—i~)N+°° j =m (tN+i~

) J

and the arbitrariness of 6, implies that (4 . 4)  + 0 as N -.

— t
Thus , I~~(t) -‘ I A(X~ (s))ds, as N ~• J O

Finally, combining the above results, we have that

r t
• I (t),~~ J A(X(s))ds, w.p.l, on finite t—intervals, and, hence,

0

(4.5 ) *(t ) = —A (X (t)), t c ~~~~~~~~

where X(0) may possibly depend on the particular convergent

subsequence.

By (Al) and the weak convergence

(4.6) sup P{(X(t) I < K )  + 1  as K ~
4 

ItI<oo

By (A4) and (4.6), the paths of XC’) are bounded w.p.l, whatever

the convergent subsequence. Under (A4), the bounded trajectories

j ~ on (—~~,~~) must lie in S. Thus, X(t) £ 5, t e ~~~~~~~~ Since S

does not depend on the selected subsequence, and since any sub-
N Nsequence of {X ( ) ,  I ( ‘ ) }  has a weakly convergent subsequence,

}

~

•

~

-

~

-

~

• -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• - • 
- • - -
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X~ 
-
~ S in probability, as n ~~. To strengthen the result, fix

T and note that the functions f(•): C
r(_co ,00) + R defined by

f Cx ( . ) )  = sup Ix (t) I, or by sup dist. (x (t) , S)
—T<t<T I t I < T

are continuous on C
X (_ oo ,00). Thus, by the weak convergence ,

(4.7) PC sup dist,(X’~(t),S) > c )  + 0
I t

as n -
~ 

o~ , each T > 0, e > 0. It is also true that (for any

convergent subsequence N and limit X(~ ))

(4.8) PC sup I X
N (t)  — X(t) 

I 
> c} -~ 0

as N -~~ ~~~, each c > 0.

Unbounded Q. The basic problem concerns tightness of

and some condition which guarantees this need to be added.

A special case is Q(x,y) = Q0(x,y) + Q1(y), where is bounded,

and the processes whose values are the “natural” integrals

tJ Qi(r(tn+s))ds are tight. Another special case is where

I :(x ,Y) I < const.(l+y), and (the constant is independent of n)

I. ~ J J EQ(~ (t +s), (t +s))Q(~ (t + T ) ,  (t +t))dsdt < const.(t2)
0 0  n n n -

But the matter will not be pursued. The aim here is to illustrate

the technique - not to develpp the very best conditions. 

~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Remark. The basic convergence result was obtained with relatively

little pain , and the proof followed a rather natural set of ideas. The

asymptotic problem was reduced to a natural one concerning the

properties of an ordinary differential equation (4.5), as in [5], [6],

[10]. Many variations are possible. With a suitable alteration in

the algorithm, even the case where there is an occasiona l system

disturbance of an impulsive type can be treated, as can various cases

where the {a~} are random variables.

I :~ 
L~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••~~~~

- 
.- 21_ -; 

~~~~~~~~~ 
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5. Inputs {~~~~~~~ } Depending on the Iterates {x~)

In some applications, it may be desired to let E
~n 

depend

on x~ , or even on ~~~~~~~~~~~~ for example, in an identification

and control problem, where the current input may be allowed to

depend on the current parameter estimate. This problem was

treated in [5], where a specific application is given, and we

re—do the general type of result given there, using the weak con-

vergence technique, and somewhat weaker assumptions on the noise.

Let {q~~} denote a given sequence of random variables, and

h(.,.,.) a measurable function such that 
~n+l = h (~~~ 1~ I~~1X~~~1

) .  We

take this form in order to be specific - but more general forms can

• ; be used. Additional conditions will be introduced below. Unless

• otherwise specified, we retain the conditions and terminology of

the previous section. Again, our interest is in the techniques and

methods of utilizing the weak convergence ideas for the type of general

application with which we deal, but not in the more specific applica-

tions , of which there are many.

Under (Al) and the bound on Q(.,.), (X”(.),I’1(•)} is still

tight on C2r (_CO ,03). Fix a weakly convergent subsequence - also

to be indexed by N, and with limit X( ),I(’). Note that (4.8)

still holds. To get a convirgence result, the net or average

effect of X~ on must vanish as m - n ~ and some condition

_ )

guaranteeing , this must be introduced. To this end and for

reference below let -‘- as n -
~~ and define, for each x

and n = 0,.,., the sequences

! ~ 
-• • --- •- - -

~
-

— •--• • - - -
~~~~~- - --- -.— - . • •  --

~~~~~ -----—- - — -  - - -,- ,- , - -- .-•-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— ——--•--
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=
• (5.1)

= h (~~~~(x) ,~1h~+k,X) + c~ , k = 0,1,...,

where, for each x and n, ~~(x) = ~~~~~ and {e~ , k = 0,1,...) is

is a sequence of “errors”.

Assume

(AS) {~~~~~~~
} is tight, or, equivalently, bounded in probability,

uniformly in, (on the Euclidean range space); i.e.,

sup P{I
~~~I > K) -‘. 0 as K -~

(A6) (replaces (A3)) ‘~~~A for some fixed x, {~~~(x)} is tight,~

then there is a random variable ~~ such that, for each bounded

and continuous function f ( s ) ,

E [ f (
~~+k (x))I ~~ (x), 

j  < i]

uniformly in n, as i, k + ~~. The function of (x,y) with values

EQ(y,
~~
) is continuous. Define A(x) = EQ (x ,~~~), and let A(•)

have the properties of the A() in (A4).

(Al) For each 6 > O, t > 0, suppose that there is an c > 0

such that { I e ~ J < c for 0 < k < m( t~+t)-n} and tightnes~~of

the initial sequence {
~~(x) } = C~~(x)} imply that

u r n  sup P{(~~~(x) — ~~(x )~ > 6)  < 6.
n-~co k:k~n(t~+t)...n

N +or equivalently, boundedness in probability, uniformly in n.

-

~ 

-~~ -~~~~~~-~ - --—v ~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : r ~~:-.
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Assumptions (AS), and (A6) do not seem to be restrictive, and

the condition requiring existence of ~~ can also be weakened.

• Condition (Al) says, basically, that the {
~~~~~~~

} process has an

inherent stability for each fixed Xn x, in the sense that

small perturbations to h(•,’, ) do not seriously affect the value

of {~~~}.

(A8) h(,•,) is continuous in its third argument, uniformly

in the first two: I.e., for some 0 ( .)  with 0(u) -~~ 0 as u -~~ 0,

Ih (~,*,x’) 
— h(F~,*,x)I ~ 0 (Ix—x ’I ), uniformly in ~~~~~~

Condition (A81 can be replaced by more general alternatives. For

• example, if (Al ) is altered such that {Ie~ I < c,...} is replaced by

i<m (t~~t)—n J0~ < ci, then (A8) can be replaced by

(A8’) Let there exist 0(.),g1
(.) such that 0(u) -‘- 0 as u~~ 0 arx~

Ih (~,~p,x’) — h(E ,*,x)I <

and let C G~ (t)} be tight (G~ (’) is defined anologously to G~ (.)

S in (A2)).

The aim of this Section is to show the same end result as was

shown in Section 4, namely that X( ) satisfies 5 C ( t )  = - A ( X ( t ) )

[• ~• (A(’) defined in (A6)), from which we get ~s in Section 4) that

X ( t )  ~~-> S, and (4.7). As in Section 4, it suffices to show that



~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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(5.2) Q (X UA) ,r (tN+s))ds 1 EQ( x ,
~~~

)ds
Ix=X ( iA )

weakly on Cr ( iA ,~ A+A ] as N ~~~~, for each A > 0 and i. We

always suppose that Skorokhod imbedding is used. Now, define the

initial condition and error terms in (5.1) by (we select them to

enable us to deal with the processes on the interval [iA ,iA +A J )

~~~(x) = 
~
m(t

N+iA) = ~~(x), all x,

= m(tN+iA),

= h (
~m (~~+j~)+k

, ‘1’m(t 1q+iA )+k’ 
Xm(t +iA )+k+l)

— h(
~ (~~+iA)+k’ *m(t +j A)+k ~ 

X ( i A ) ) .

Thus

(5.3a) 
~
m (tN+iA)+k = ~~~1 X ( i A ) )

and

(5.3b) 
~

(t
N+iA+u) = 

~rn (t+
i A+ ) (t +i A )(X (iA))~ 

for u > 0.

By (A5), the tightness requirement on {~~~(X(iA))} = 4E
~m( + L ~~N 1

in (Al) (for x = X ( iA ))  is satisfied. Next, note that (5.4)

follows from (A8 ) and (4 .8) .

• • •~~~~~~~~~~~~ —~- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~--- • 
~~~~~~~• ••

•
~~~~~~~~ 

—•--—--•-—
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(5.4) u r n  lim PC sup Ic~I > ci = 0, each £ > 0.
A-~0 N+oo 0<k<m(t.~+iA+i~) —m(t~1-iA)

• By (5.3), (5.4) and (A7), there is a which goes to 0 as

-~- 0 and such that

‘1 (5.5) u r n  E 
J 

I Q ( x ( i A ) ,  
~~~ 

(tN+s)) 
— Q(X(iL~), ~~ (X(it~),s)) Ids < 6 1, ,it~

where we define ~(x,s) t~ be the piecewise constant right

continuous interpolation of {~~~(x)}, with interpolation intervals

• 

- 

- 

{am(t + i
~~)? 

a (~~ +
i A)+l~ ...}

• By (5.5), in order to prove (5.2), we need only show that the

sequence of functions 6N(.) on the interval [iA , ii~+~\1 and with

values

• - -~N ~~~ —N( 5 . 6 )  Q Ct ) = 
I 

Q(x ,~ (x , s) ) ds ,

I where

= Q(x ,~~~(x , s ) )  - EQ (X ,~
x),

- tends weakly to the zero process as N -‘- ~~~~, for each x. As done

in Section 4, we can suppose that Q(.,.) is scalar valued. Then,

(5.6) has the value

~ : 

— ——--- -— -•-•-•—•-•- -- •------
• -• •—---- •—• •- •-•- -~~~~ 

- • •
•~~~~~~-~~~~ • ---••— ---- -•— --•- 
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m(yiM-t) - m(tN+iA)

Now , by (A6), and an argument like that associated with the con-

vergence of (4.4), and with f(.) = Ô (x,), we have

“N 2
EIQ (t)j -

~ 0, which implies that Q ( ) +  zero process weakly.

The demonstration of convergence is now complete , and (4.5) and

(4.7) continue to hold .

The proof was relatively straightforward , and the assumptions

not unreasonable. The tightness assumptions and weak convergence

techniques allow a relatively simple treatment - one which focuses

on the basic structures and does not get overinvolved in detail.

Generalizations to abstract valued problems are also possible.

- —- -~-— - ---~~~ -- - • --• • ——• -- -•- — ~~~~~~ •—•- — — 
~~~~~

- - - - -  —
~~~~

--  ‘TI_ -Io~~ —~~---————---- •~~~~~~~~~~~~~ -~~~~~~~~~~~—•——- —- --~~-• •--- —•- — • • --- -•-— - ••• • • • • •~~-- •--•~~~~~~~ -~~~~ •
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6. An Identification Prob]~ m

Again , following an application in [5], we discuss an algorithm for tli

identification of the coefficients 0 = (A1,...,A~ ,...,B1,... ,Bz)

in the system

I

(6.1) y
~ 

+ A1y~~ 1 + •~~• + A~y~~~ = BlUn_l+ •~~• + ~~~~~~ +

where {~~~~~~~
} is some sequence of random variables. For notational

simplicity, let the ~~~~~ be scalars; the general case is treated

in exactly the same way. Define =

Then y O ’~~ + . Suppose that the l.h.s. of (6.1) is asymptotically

stable, and {u~~ p~ } satisfies the condition in (A3) on {~~~ }. Let

~p be known at time n.

Let denote the n~’~ estimate of 0. A common recursive

estimation algorithm is given by (6.1) - for suitable funct ions

R = R 1 + a Q 1(iP~~~~ -

(6.1) K = ~~~~~~~~~~~~~~~~~~~~~~~

= 
~~~~~~~~~~~ 

+ ~~~~~~~~~~~~~~~~~~~

Usually the Q.(.) are the identity runctions. Let Q1(~ ) =

identity, and suppose that

- • 

(6.2) ~~~~~ is bounded in probability,  uniformly in n ,

t

iI1l ~~~~~~ - —~~~~--- !•• ~~~~~~~~~~~~~~~~~~~~~~~~ 

—S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--•-•---•• S
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and that there is a positive definite matrix H such that

(6.3) E[ k~~~k I1Pj , i <n ] -~-H , as n,k -’-~~.

Define BO(.): B°(t) 0, t < 0, and B°(t) = B°(t~) + (t
~
tn)IPn~~

on [t
~÷i

— ta], and define B~~(.) by Bn(t) = B0(t+t). Also,

define R (t), and Y (t) as X~~(’) was defined in Section 4, but

with the r.h.s. of the first and third lines of (6.1) replacing the

r.h s. of (4.2). Only a rough outline will be given. Under reasonable

conditions on 
~
‘
~n~ ’ 

the sequence {B~ (~),R~ ()} is tight on
t C2

~~ (_co ,oo ) .

Then , by the result of Section 4,{R~ } tends in probability to the

constant limit solution ~ of

f~ = H - R ,

and (4.7) holds with Ct), S replaced by Rn(t) ,L

The convergence of {Y~) can also be treated with Q2 = identity.

But in order to be able to appeal directly to the result of

Section 4, without further work, let Q2
(.) be bounded and

continuous: for example, each component of Q2(.) can be a

saturation function. (Indeed, it is possible to study the limit

as a function of the saturation level.) Some additional conditions

need to be introduced to assure that (A2 ) and (A3) hold (here

is replaced by 
~
‘n”~n~ 

These conditions are not unreasonable, but

to save some space and discussion, simply assume (A2), (A3). Define

(a function of a matrix M and vector Y) by

A2(M,Y) = u r n  E Q2(M ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ i < n).

s = number of elements in Rn•

- -- — -  — 

~~~
. 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~••  

- 
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Let A2(’,’) and Y = A2 (R 1
11) have the properties of the A()

and ~ = -A(x) of ( A4 ) .  Then 
~n 

converges in probability to

the limit set of ~r = A2(I
1,Y) and (4.1) holds also.

~~~

• 
~~~~~~~~~~~~

- •~~~~~~ -S • • ~:~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~ _- — ?_
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7. Conclusions

Some of the concepts of weak convergence theory have been

introduced and applied to convergence problems for a family of

recursive adaptive procedures. The conditions and ideas are

rather natural for that type of problem, and the proofs are

• relatively simple. There are possible extensions in many directions.

It is expected that the techniques will play an important role in

control theory.

t

S

-I

1

I

~~~~~~~~~~~~~ -:~~~~~~; ~~~ -~~
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